Multidimensional Penalized Signal Regression
نویسندگان
چکیده
We propose a general approach to regression on digitized multidimensional signals that can pose severe challenges to standard statistical methods. The main contribution of this work is to build a two-dimensional coefficient surface that allows for interaction across the indexing plane of the regressor array. We aim to use the estimated coefficient surface for reliable (scalar) prediction. We assume that the coefficients are smooth along both indices. We present a rather straight-forward and rich extension of penalized signal regression using penalized B-spline tensor products, where appropriate difference penalties are placed on the rows and columns of the tensor product coefficients. Our methods are grounded in standard penalized regression, thus crossvalidation, effective dimension and other diagnostics are accessible. Further the model is easily transplanted into the generalized linear model framework. An illustrative example motivates our proposed methodology and performance comparisons are made to other popular methods.
منابع مشابه
Multidimensional Single-Index Signal Regression
In general, linearity is assumed to hold in multivariate calibration (MVC), but this may not be true. We approach the MVC problem using multidimensional penalized signal regression, which can be extended with an explicit link function between linear prediction and response and in the spirit of single-index models. As the twodimensional surface of calibration coefficients is smoothly and general...
متن کاملPenalized Estimators in Cox Regression Model
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...
متن کاملPenalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملResearch Article On Solving Lq -Penalized Regressions
Lq-penalized regression arises in multidimensional statistical modelling where all or part of the regression coefficients are penalized to achieve both accuracy and parsimony of statistical models. There is often substantial computational difficulty except for the quadratic penalty case. The difficulty is partly due to the nonsmoothness of the objective function inherited from the use of the ab...
متن کاملUse of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Technometrics
دوره 47 شماره
صفحات -
تاریخ انتشار 2005